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Contextualization & Motivation
Applying Machine Learning to Networks
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A Knowledge Plane for the Internet
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Clark, David D., et al. "A knowledge plane for the internet." Proceedings of 

the 2003 conference on Applications, technologies, architectures, and 

protocols for computer communications. ACM, 2003.

“we propose a new construct, the Knowledge 
Plane, a pervasive system within the network 
that builds and maintains high-level models of 
what the network is supposed to do”

“The knowledge plane is novel in its reliance on 
the tools of AI and cognitive systems.”

D. Clark (MIT) “A Knowledge Plane for the 
Internet”, 2003



Why we are not there?

• Traditionally networks have been distributed systems
– Partial view and control 

• Beyond programmability, SDN provides centralization:
– Full control over the network

• Network Analytics/Telemetry provides full view of the 
network

• SDN and NA are enabling technologies for Machine 
Learning techniques applied to networks
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Knowledge-Defined Networking

• Apply ML techniques to Networking:
– Control (fast dynamics)

• E.g, routing, resource allocation (NFV/SFC), PCE, optimization, 
congestion detection

– Management (slow dynamics)
• E.g., network planning, load estimation

– Recommendation mechanisms
– Out of the scope: Traffic Analysis, Anomaly Detection, Root-

Cause Analysis

• Towards self-driving networks
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Evolution in other fields
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Hardware Software Artificial Intelligence



Knowledge-Defined Networking Paradigm
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Fig. 1. The Knowledge plane

shows an overview of the KDN architecture and its functional
planes.

The Data Plane is responsible for storing, forwarding and
processing data packets. In SDN networks, data plane devices
are typically white-boxes composed of line-rate programmable
forwarding hardware. They operate unaware of the rest of
the network and rely on the other planes to populate their
forwarding tables and update their configuration.

The Control Plane exchanges operational state in order
to update the data plane matching and processing rules. On
an SDN network, this role is assigned to the –logically
centralized– SDN controller that programs SDN data-plane
forwarding elements via a southbound interface, typically
using an imperative language. While the data-plane operates
at packet time-scales, the control-plane is slower and typically
operates at flow time-scales.

The Management Plane ensures the correct operation and
performance of the network in the long term. It defines the
network topology and handles the provision and configuration
of network devices. In SDN networks this is usually handled
also by the SDN controller. The management plane is also
responsible of monitoring the network to provide critical
network analytics. For this it collects telemetry information
from the data plane while keeping an historical record of
network state and events. The management plane is orthogonal
to the control and data planes and typically operates at a slower
time-scale.

The Knowledge Plane, as originally defined by Clark, is
redefined in this paper under the terms of SDN. In that
sense, we adapt Clarks definition of the KP: the heart of the
knowledge plane is its ability to integrate behavioral models
and reasoning processes into an SDN network. The KP takes
advantage of the Control and Management planes to obtain
a full view and control over the network. It is responsible
of learning the behavior of the network and, in some cases,
automatically operate the network accordingly. Fundamentally,
the KP processes the network analytics collected by the man-
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Fig. 2. KDN operational loop

agement plane, transforms them into knowledge via machine
learning, and uses that knowledge to take decisions (either
automatically or through human intervention). Parsing the
information and learning from it is typically a slow process,
however using such knowledge automatically can be done at
a time-scales close to the control and management planes.

I I I . KNOWLEDGE-DEFINED NETWORKING

The Knowledge-Defined Networking architecture operates
by means of a loop -in a similar way to control systems– to
provide automation, recommendation, optimization, validation
and estimation. Fig. 2 shows the main steps of such loop, in
what follows we describe them in detail.

a) Forwarding Elements ! Analytics Platform: The Ana-
lytics Platform aims to gather as much information as possible
to offer a complete view of the network. To that end, it
monitors in real time the Data Plane elements while they for-
ward packets in order to access fine-grain traffic information.
Besides, it queries the state at the SDN controller to obtain
control and management state. The analytics platform relies
on protocols such NETCONF2 (to obtain the configuration
and operational data from network devices) and NetFlow3 (to
extract traffic information and samples). Themost relevant data
collected by the Analytics Platform is summarized below.

• Packet-level data and flow-level data: this includes DPI
information, flow granularity data and relevant traffic
features.

• Network state: This includes the logical and physical
configuration of the network as well as the network
topology.

• Service-level telemetry: In some scenarios the analytics
platform will also monitor and store service-level infor-
mation (e.g, load of the services, QoE, etc), this is rele-
vant to learn the service-related behavior and its relation
with network performance, load and configuration.

2RFC 6241
3RFC 3954



Goals of KDN
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• Recommendation
• Optimization

• Hidden Information
• Complex systems

• Estimation/Validation
• Performance/Cost

• Automatization
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Fig. 1. The Knowledge plane

shows an overview of the KDN architecture and its functional
planes.

The Data Plane is responsible for storing, forwarding and
processing data packets. In SDN networks, data plane devices
are typically white-boxes composed of line-rate programmable
forwarding hardware. They operate unaware of the rest of
the network and rely on the other planes to populate their
forwarding tables and update their configuration.

The Control Plane exchanges operational state in order
to update the data plane matching and processing rules. On
an SDN network, this role is assigned to the –logically
centralized– SDN controller that programs SDN data-plane
forwarding elements via a southbound interface, typically
using an imperative language. While the data-plane operates
at packet time-scales, the control-plane is slower and typically
operates at flow time-scales.

The Management Plane ensures the correct operation and
performance of the network in the long term. It defines the
network topology and handles the provision and configuration
of network devices. In SDN networks this is usually handled
also by the SDN controller. The management plane is also
responsible of monitoring the network to provide critical
network analytics. For this it collects telemetry information
from the data plane while keeping an historical record of
network state and events. The management plane is orthogonal
to the control and data planes and typically operates at a slower
time-scale.

The Knowledge Plane, as originally defined by Clark, is
redefined in this paper under the terms of SDN. In that
sense, we adapt Clarks definition of the KP: the heart of the
knowledge plane is its ability to integrate behavioral models
and reasoning processes into an SDN network. The KP takes
advantage of the Control and Management planes to obtain
a full view and control over the network. It is responsible
of learning the behavior of the network and, in some cases,
automatically operate the network accordingly. Fundamentally,
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Fig. 2. KDN operational loop

agement plane, transforms them into knowledge via machine
learning, and uses that knowledge to take decisions (either
automatically or through human intervention). Parsing the
information and learning from it is typically a slow process,
however using such knowledge automatically can be done at
a time-scales close to the control and management planes.

I I I . KNOWLEDGE-DEFINED NETWORKING

The Knowledge-Defined Networking architecture operates
by means of a loop -in a similar way to control systems– to
provide automation, recommendation, optimization, validation
and estimation. Fig. 2 shows the main steps of such loop, in
what follows we describe them in detail.

a) Forwarding Elements ! Analytics Platform: The Ana-
lytics Platform aims to gather as much information as possible
to offer a complete view of the network. To that end, it
monitors in real time the Data Plane elements while they for-
ward packets in order to access fine-grain traffic information.
Besides, it queries the state at the SDN controller to obtain
control and management state. The analytics platform relies
on protocols such NETCONF2 (to obtain the configuration
and operational data from network devices) and NetFlow3 (to
extract traffic information and samples). Themost relevant data
collected by the Analytics Platform is summarized below.

• Packet-level data and flow-level data: this includes DPI
information, flow granularity data and relevant traffic
features.

• Network state: This includes the logical and physical
configuration of the network as well as the network
topology.

• Service-level telemetry: In some scenarios the analytics
platform will also monitor and store service-level infor-
mation (e.g, load of the services, QoE, etc), this is rele-
vant to learn the service-related behavior and its relation
with network performance, load and configuration.

2RFC 6241
3RFC 3954



Scope of this talk

• How you can build a self-driving network?

• Show some preliminary results 

• Outcomes:
– Which are the main challenges?

– New research directions

– Have a better understanding of what are the 
consequences of using ML to control the network
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A brief intro to Machine Learning
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ML fitting the (true) function
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• With enough data ML 
will fit the true function

• ML interpolates and 
extrapolates

• Can predict unseen 
scenarios



Building a self-driving network
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Building a Self-Driving Network
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shows an overview of the KDN architecture and its functional
planes.

The Data Plane is responsible for storing, forwarding and
processing data packets. In SDN networks, data plane devices
are typically white-boxes composed of line-rate programmable
forwarding hardware. They operate unaware of the rest of
the network and rely on the other planes to populate their
forwarding tables and update their configuration.

The Control Plane exchanges operational state in order
to update the data plane matching and processing rules. On
an SDN network, this role is assigned to the –logically
centralized– SDN controller that programs SDN data-plane
forwarding elements via a southbound interface, typically
using an imperative language. While the data-plane operates
at packet time-scales, the control-plane is slower and typically
operates at flow time-scales.

The Management Plane ensures the correct operation and
performance of the network in the long term. It defines the
network topology and handles the provision and configuration
of network devices. In SDN networks this is usually handled
also by the SDN controller. The management plane is also
responsible of monitoring the network to provide critical
network analytics. For this it collects telemetry information
from the data plane while keeping an historical record of
network state and events. The management plane is orthogonal
to the control and data planes and typically operates at a slower
time-scale.

The Knowledge Plane, as originally defined by Clark, is
redefined in this paper under the terms of SDN. In that
sense, we adapt Clarks definition of the KP: the heart of the
knowledge plane is its ability to integrate behavioral models
and reasoning processes into an SDN network. The KP takes
advantage of the Control and Management planes to obtain
a full view and control over the network. It is responsible
of learning the behavior of the network and, in some cases,
automatically operate the network accordingly. Fundamentally,
the KP processes the network analytics collected by the man-
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agement plane, transforms them into knowledge via machine
learning, and uses that knowledge to take decisions (either
automatically or through human intervention). Parsing the
information and learning from it is typically a slow process,
however using such knowledge automatically can be done at
a time-scales close to the control and management planes.

I I I . KNOWLEDGE-DEFINED NETWORKING

The Knowledge-Defined Networking architecture operates
by means of a loop -in a similar way to control systems– to
provide automation, recommendation, optimization, validation
and estimation. Fig. 2 shows the main steps of such loop, in
what follows we describe them in detail.

a) Forwarding Elements ! Analytics Platform: The Ana-
lytics Platform aims to gather as much information as possible
to offer a complete view of the network. To that end, it
monitors in real time the Data Plane elements while they for-
ward packets in order to access fine-grain traffic information.
Besides, it queries the state at the SDN controller to obtain
control and management state. The analytics platform relies
on protocols such NETCONF2 (to obtain the configuration
and operational data from network devices) and NetFlow3 (to
extract traffic information and samples). Themost relevant data
collected by the Analytics Platform is summarized below.

• Packet-level data and flow-level data: this includes DPI
information, flow granularity data and relevant traffic
features.

• Network state: This includes the logical and physical
configuration of the network as well as the network
topology.

• Service-level telemetry: In some scenarios the analytics
platform will also monitor and store service-level infor-
mation (e.g, load of the services, QoE, etc), this is rele-
vant to learn the service-related behavior and its relation
with network performance, load and configuration.

2RFC 6241
3RFC 3954



Knowledge Plane
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Network Modeling based on
Machine Learning
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Network Modeling based on Machine Learning
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ABSTRACT

Recent t rends in networking are proposing the use of Ma-

chine Learning (ML) techniques for the cont rol and opera-
t ion of the network. In this context , ML can be used as a
network modeling technique to understand the behavior of

thenetwork and build a model that predicts it s performance.
In this paper, we focus on modeling via ML the average end-

to-end delay of computer networks as a funct ion of its load
(t raffic). Part icularly, we analyze the e↵ect of di↵erent av-

eraging t imes, t raffic dist ribut ions, t raffic intensit ies, sizes
of the network, topologies and rout ing policies with respect

the accuracy of the model. As a result of our analysis we
conclude that the average end-to-end delay can be learned

with reasonable accuracy and that the main source of error
is the own variance of the measurement .

CCS Concepts

•N et wor ks ! N et wor k p er for m ance m odel ing;

Keywords

KDN, SDN, ML, Networking, Modeling

1. INTRODUCTION
Recent t rends in networking are proposing the use of Ma-

chine Learning (ML) techniques for the cont rol and oper-

at ion of the network. Although this idea is not new (see
D.Clark et al.) [1] this t rend is gaining momentum thanks
to two enabling technologies: Software-Defined Networking

(SDN) [2] and Network Analyt ics (NA) [3, 4].
Indeed, the rise of SDN transforms the network from a in-

herent ly dist ributed system to a (logically) cent ralized one
that can be fully cont rolled through the SDN cont roller.

At the same t ime, the NA field is developing techniques to
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monitor and obtain precise metrics of the network behavior.
When combined, SDN and NA provide a cent ral ent ity that

o↵ers a rich view and a full cont rol over the network where
to apply ML.

In this context , learning techniques can be used to pro-
vide automat ic cont rol of the network via the SDN con-

t roller thanks to the knowledge obtained via the NA plat -
form. We refer to the result ing architecture as Knowledge-

Defined Networking (K DN) [5].
One of the applicat ions of KDN is to model the behavior

of the network via ML techniques. These ML-based models
can be used to facilit ate the operat ion of a network, for

example: to opt imize di↵erent parameters of the network,
such as the rout ing, to validate a new configurat ion before
actually applying it to the network, or to analyze the e↵ect

of some failures. However and in this context , it is crit ical to

• It is feasible to model the network as a 
black-box using Machine Learning 
techniques?

• Can we build a model using Machine 
Learning techniques that given:

- Configuration of the network
- Traffic Load

Is able to accurately estimate the 
delay?



Methodology
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- Topology 
- Network Size
- Traffic Characteristics
- Saturation
- And the resulting delay

Evaluate the accuracy
Which is the relation 

between accuracy and 
the fundamental 
network properties?

Training
Set

• SVM
• ANN
• Polynomial R.

Supervised
Learning



Results: Variance of the Data-Set
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Traffic Distribution Delay Distribution

• ML models the network with an error <1%
• Some network characteristics increase the 

variance of the delay
• Lager variance requires more samples to 

accurately estimate the end-to-end 
latency



Results: Variance of the Data-Set
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Traffic Intensity Network Topology



Results with appropiate averaging times
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Discussion

• Machine Learning is a third-pillar in Network 
Modeling
– Analytical Techniques (e.g., Markov Chains)

• Do not work well in complex scenarios

– Computational Models (e.g., Simulation)
• High cost in terms of CPU

• Simulating complex networks requires costly development

– Neural Networks

25



Machine Learning for Computer Network modeling

Advantages

• Accurate

• Can model the system 
as a black-box

• Scales well with 
complexity

• Trained models are 
very lightweight

26

Challenges

• Representative 
Dataset

• No guarantees

• Cannot be 
understood by 
humans



Optimization Module
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Knowledge Plane
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How do you represent traffic load?
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• Type of traffic
Destination-based flows
Traditional 5-tuple flows
34-field type flows
…

• Each type of traffic is represented by a set of features
E.g., Moments of the PDF of the inter-arrival time
E.g., Bandwdith, # Packets, etc
…

• T represents the Traffic Load as a multi-

dimensional matrix
Example: 
In a network with 20 ingress/egress nodes, 
assuming 10 types of traffic and 70 features per 
type: 280.000 elements



How do you represent the network configuration?

30

ti
l1

l2

ln

• For each type of traffic
Traditional 5-tuple flows
34-field type flows
…

• Send the traffic through links l1..ln with a 
certain percentage of traffic per link

• R represents the Network 
Configuration as a multi-dimensional 
matrix

Example: 
In a 100-sized network, assuming 10 types 
of traffic and 3 links per node: 300.000 
elements.



Challenges in the Optimization

• Goal: Given the current traffic load T search 
for the network configuration R that achieves 
the target performance

• Space is very large, traditional optimization 
algorithms may be too slow
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Reinforcement Learning
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Reward

State

Action
Left? 

Right? 
Straight?

Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 

(2015): 529-533.



Reinforcement Learning
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Change Routing 
Configuration

Network

Target 
Performance

State: Traffic and 
Performance

Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 

(2015): 529-533.



Knowledge Plane
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Challenges

• T and R are also too large to be fed to a Neural 
Network
– The curse of dimensionality

• Potential Solutions
– Feature Extraction

– Autoencoders

– Deep Reinforcement Learning

36



Feature Extraction
• Manual definition of features
• Example:

– IGP Cost 

• But what about the topology?
– Traditional adjacency matrix do not 

work

• Advantages
– Features have meaning to humans
– System can be understood and 

troubleshoot to a certain extent 
– Can help provide some 

performance guarantees

37

Kar, Abhishek. "Unsupervised temporal segmentation of facial 

behaviour."



Autoencoders
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• Goal: Reduce dimensionality

• Can be understood as 
automatic feature engineering

• It works if there are 
correlations in the data

• Advantages
– Automatic

• Disadvantages
– Features do not have meaning for 

humans



Deep Reinforcement Learning

• Just use more neurons
– Deep Neural Networks

• Advantages
– Black-box approach

• Disadvantages
– Costly training

– The system cannot be 
understood by humans

39

Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 

(2015): 529-533.



Deep Reinforcement Learning: Preliminary Results

40Note that this experiments needs to be scaled up



Conclusions & Future Work
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Conclusions & Future Work
• Machine Learning represents a tool for network modeling that will

result in unprecedented automation and optimization

• Advantages

– Scales very well with complexity

– Can understand the system as a black-box

– Once trained, very lightweight

• Challenges

– What is a representative data-set?

– How do we represent fundamental network characteristics?

– ML produces systems that do not offer guarantees and are hard to 
understand/troubleshoot by humans
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Knowledge-Defined Networking
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