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Contextualization & Motivation
Applying Machine Learning to Networks




A Knowledge Plane for the Internet

D. Clark (MIT) “A Knowledge Plane for the
Internet”, 2003

“we propose a new construct, the Knowledge
Plane, a pervasive system within the network
that builds and maintains high-level models of
what the network is supposed to do”

“The knowledge plane is novel in its reliance on
the tools of Al and cognitive systems.”

Clark, David D., et al. "A knowledge plane for the internet.” Proceedings of
the 2003 conference on Applications, technologies, architectures, and
protocols for computer communications. ACM, 2003.
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Why we are not there?

Traditionally networks have been distributed systems
— Partial view and control

Beyond programmability, SDN provides centralization:
— Full control over the network

Network Analytics/Telemetry provides full view of the
network

SDN and NA are enabling technologies for Machine
Learning techniques applied to networks



Knowledge-Defined Networking

* Apply ML techniques to Networking:

— Control (fast dynamics)

» E.g, routing, resource allocation (NFV/SFC), PCE, optimization,
congestion detection

— Management (slow dynamics)
* E.g., network planning, load estimation
— Recommendation mechanisms
— Out of the scope: Traffic Analysis, Anomaly Detection, Root-
Cause Analysis

* Towards self-driving networks



Evolution in other fields




Knowledge-Defined Networking Paradigm
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Goals of KDN

‘ Knowledge Human decision
Machine Intent
learning language
AL,
Automatic decision

______________________________________________________

Analytics ~— <4 controller

platiorm ~— —

Recommendation
Optimization
 Hidden Information
 Complex systems
Estimation/Validation
* Performance/Cost
Automatization



Scope of this talk

* How you can build a self-driving network?
* Show some preliminary results

e Qutcomes:
— Which are the main challenges?
— New research directions

— Have a better understanding of what are the
consequences of using ML to control the network



A brief intro to Machine Learning




ML fitting the (true) function

% Training Example

<

== True Function
Learnt function

* With enough data ML
will fit the true function

* ML interpolates and
extrapolates

e Can predict unseen
scenarios

Test point x X



Building a self-driving network




Building a Self-Driving Network




Knowledge Plane
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Network Modeling based on
Machine Learning




Network Modeling based on Machine Learning

ML model and learning technique
Machine Learning

i ) “li O O 'D1,1 . .
pretectre S of® U@ @@ ol e It is feasible to model the network as a
S e e e o S . . .
e e e o &F black-box using Machine Learning
TNTm OO OO OO DDJ OQ\Q&b te Chn| qu e S?
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* Can we build a model using Machine

System Deterministic . . .
Abstraction System \6 Learning techniques that given:
time th M ;'9 H H
/\¥ T - Configuration of the network

mean tlme

- Inter-arrival processes mean

- Packet-length processes Network Network Routlng - Delay processes - 1
(Stochastic processes) topology properties policy (Stochastic processes) Trafflc Load
/ﬁk Is able to accurately estimate the

delay?

Communication
Network

Nodes are traffic generators, 01011010

consumers and routers
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Methodology

| > .« SVM ‘ .
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. E Evaluate the accuracy

- Topology Which is the relation

- Network Size between accuracy and

- Traffic Characteristics the fundamenta/.

network properties?

- Saturation

- And the resulting delay 20




Learning error [%]

Results: Variance of the Data-Set

N
v

Traffic Distribution Delay Distribution

e ML models the network with an error <1%
e Some network characteristics increase the
variance of the delay
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Learning error [%)
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Results: Variance of the Data-Set
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Results with appropiate averaging times
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Discussion

* Machine Learning is a third-pillar in Network
Modeling
— Analytical Techniques (e.g., Markov Chains)
* Do not work well in complex scenarios

— Computational Models (e.g., Simulation)
* High cost in terms of CPU
e Simulating complex networks requires costly development

— Neural Networks



Machine Learning for Computer Network modeling

Advantages Challenges
* Accurate * Representative
 Can model the system Dataset

as a black-box

Scales well with
complexity

Trained models are
very lightweight

* No guarantees

e Cannot be
understood by
humans



Optimization Module




Knowledge Plane
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How do you represent traffic load?

¢ Type of traffic

Source
/ Destination-based flows

c |

2 Traditional 5-tuple flows

c 34-field type flows

a N )

o \ * Each type of traffic is represented by a set of feature
E.g., Moments of the PDF of the inter-arrival time

E.g., Bandwdith, # Packets, etc

. T"r.epresents the Traffic Load as a multi-

dimensional matrix

Example:
In a network with 20 ingress/egress nodes,

assuming 10 types of traffic and 70 features per
type: 280.000 elements 7




How do you represent the network configuration?

"
i

15
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* For each type of traffic
Traditional 5-tuple flows
34-field type flows

* Send the traffic through links I1..In with a
certain percentage of traffic per link

 Rrepresents the Network
Configuration as a multi-dimensional
matrix

Example:

In a 100-sized network, assuming 10 types

of traffic and 3 links per node: 300.000

elements.



Challenges in the Optimization

* Goal: Given the current traffic load T search
for the network configuration R that achieves

the target performance

e Space is very large, traditional optimization
algorithms may be too slow



Reinforcement Learning

Action
Left?
Right?
Straight?

State

Reward

Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning.” Nature 518.7540
(2015): 529-533.




Reinforcement Learning

State: Traffic and Target
Performance Performance Change Routing
N Configuration
staﬁte reward action
S, A,

Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning.” Nature 518.7540
(2015): 529-533.



Knowledge Plane

Target
Performance
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Challenges

* T and R are also too large to be fed to a Neural
Network

— The curse of dimensionality
 Potential Solutions
— Feature Extraction

— Autoencoders
— Deep Reinforcement Learning



Feature Extraction

distance  distance v height U appearance o
(inner brow) X (outer brow) 2 (eye) (upper face)
P = %

height height ' - angle L appearance o
(lip) (teeth) X2 (mouth corner) X3 (Iowerface)

-

Figure 2: Facial features used for temporal clustering. (a) AAM fitting across different
subjects. (b) Eight different features extracted from distance between tracked points,
height of facial parts, angles for mouth corners, and appearance patches.

Kar, Abhishek. "Unsupervised temporal segmentation of facial
behaviour."

Manual definition of features
Example:

IGP Cost

But what about the topology?

Traditional adjacency matrix do not
work

Advantages

Features have meaning to humans

System can be understood and
troubleshoot to a certain extent

Can help provide some
performance guarantees

37



Autoencoders

* Goal: Reduce dimensionality

Input #1 — — Qutput #1
gt 2 A * Can be understood as
Input #3 | , — automatic feature engineering
Input #4 5 Output #4 [ ] It Wor‘ks if the re a r'e
topt 4 RN Output #5 correlations in the data
nput # » ‘ ( Qutput #
16 6  Advantages
Input #7 Qutput #7 .
— Automatic
Input #8 Output #8

 Disadvantages

— Features do not have meaning for
humans



Deep Reinforcement Learning

e Just use more neurons

: . ==
g2 ] /m E — Deep Neural Networks
= = = § * * Advantages

- T_ o il ¢ — Black-box approach
ot ] Hi\ o . ¢ om
@] e S * Disadvantages

' | o — Costly training

— The system cannot be
understood by humans

Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning.” Nature 518.7540
(2015): 529-533.
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Deep Reinforcement Learning: Preliminary Results

AVG(delay)
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Note that this experiments needs to be scaled up

Python

A

RL agent Y

("

delay

t SL/ routing
\V
.

network simulator

OMNeT++
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Conclusions & Future Work




Conclusions & Future Work

 Machine Learning represents a tool for network modeling that will
result in unprecedented automation and optimization

Advantages
— Scales very well with complexity
— Can understand the system as a black-box
— Once trained, very lightweight
Challenges
— What is a representative data-set?
— How do we represent fundamental network characteristics?

— ML produces systems that do not offer guarantees and are hard to
understand/troubleshoot by humans



Knowledge-Defined Networking

https://arxiv.org/pdf/1606.06222.pdf

Knowledge-Defined Networking
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Abstract—The research community has considered the appli-
cation of Artificial Intelligence (AI) techniques to control and
operate networks. A notable example is the Knowledge Plane as
proposed by D.Clark et al. Such techniques have not, as yet, been
extensively prototyped or deployed in the field. In this paper, we
explore the reasons for the lack of adoption and posit that the
rise of two recent paradigms: Software Defined Networking (SDN)
and Network Analytics (NA), will facilitate the adoption of Al
techniques in the context of network operation and control. We
describe in some detail an architecture which accommodates and
exploits SDN, NA and A, and provide use cases that illustrate
its applicability and benefits, together with simple experimental
results that support its feasibility. We refer to this architecture
as Knowledge Defined Networking (KDN).

Keywords—Knowledge Plane, SDN, Network Analytics, Machine
Learning, NFV, Knowledge-Defined Networking

I. INTRODUCTION

D. Clark et al. proposed “A Knowledge Plane for the
Internet” [1], a new construct that relies on Machine Learn-

techniques provide real-time, packet and flow-granularity in-
formation, as well as configuration and network state monitor-
ing data to a centralized Network Analytics (NA) platform [4].
In this context, telemetry and analytics technologies provide a
richer view of the network compared to what was possible
with conventional network management approaches.

In this paper, we advocate that the centralized control offered
by SDN, combined with a rich centralized view of the network
provided by network analytics, enable the deployment of the
KP concept proposed in [1]. In this context, the KP can use
ML to gather knowledge about the network, and exploit that
knowledge to control the network using logically centralized
control facilities provided by SDN. We refer to the architecture
resulting from combining SDN, telemetry, Network Analytics,
and the Knowledge Plane as Knowledge-Defined Networking.

This paper first describes the Knowledge-Defined Network-
ing (KDN) architecture and how it operates. Then, it describes
a set of relevant use-cases that show the applicability of such
architecture to networking and the benefits associated to using
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